16 research outputs found

    The North Atlantic Waveguide and Downstream Impact Experiment

    Get PDF
    The North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) explored the impact of diabatic processes on disturbances of the jet stream and their influence on downstream high-impact weather through the deployment of four research aircraft, each with a sophisticated set of remote sensing and in situ instruments, and coordinated with a suite of ground-based measurements. A total of 49 research flights were performed, including, for the first time, coordinated flights of the four aircraft: the German High Altitude and Long Range Research Aircraft (HALO), the Deutsches Zentrum für Luft- und Raumfahrt (DLR) Dassault Falcon 20, the French Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE) Falcon 20, and the British Facility for Airborne Atmospheric Measurements (FAAM) BAe 146. The observation period from 17 September to 22 October 2016 with frequently occurring extratropical and tropical cyclones was ideal for investigating midlatitude weather over the North Atlantic. NAWDEX featured three sequences of upstream triggers of waveguide disturbances, as well as their dynamic interaction with the jet stream, subsequent development, and eventual downstream weather impact on Europe. Examples are presented to highlight the wealth of phenomena that were sampled, the comprehensive coverage, and the multifaceted nature of the measurements. This unique dataset forms the basis for future case studies and detailed evaluations of weather and climate predictions to improve our understanding of diabatic influences on Rossby waves and the downstream impacts of weather systems affecting Europe

    Développement et évaluation de méthodes multicapteurs pour la mission EarthCare, à partir des mesures de l’A-Train et des missions aéroportées

    No full text
    The impact of ice clouds on the water cycle and radiative budget is still uncertain due to the complexity of cloud processes that makes it difficult to acquire adequate observations of ice cloud properties and parameterize them into General Circulation Models. Passive and active remote sensing instruments, radiometers, radars and lidars, are commonly used to study ice clouds. Inferring cloud microphysical properties (extinction, ice water content, effective radius, ...) can be done from one instrument only, or from the synergy of several. The interest of using instrumental synergies to retrieve cloud properties is that it can reduce the uncertainties due to the shortcomings of the different instruments taken separately. The A-Train constellation of satellites has considerably improved our knowledge of clouds. Since 2006, the 532nm backscattering lidar CALIOP on board the satellite CALIPSO and the 94GHz cloud radar CPR on board the satellite CloudSat have acquired cloud vertical profiles globally and many lidar-radar synergetic methods have been adapted to CloudSat and CALIPSO data. In 2021 will be launched a new satellite, EarthCARE, boarding state of the art remote sensing instrumentation, in particular ATLID, a High Spectral Resolution Lidar (HSRL) at 355nm and a Doppler cloud radar at 94 GHz. The main mission of this satellite is to quantify interactions between clouds, aerosols and the Earth's radiation budget in order to improve weather prediction and climate models. Thanks to its advanced instrumentation mounted on a single platform, this new mission is expected to provide unprecedented observations of clouds from space. However, to do so, the synergistic algorithms that were developed for A-Train measurements have to be adapted to this new instrumental configuration. During my PhD, I focused on the Varcloud algorithm that was developed in 2007 by Delanoë and Hogan, based on a variational technique. The first part of the work consisted in adapting some parameters of the microphysical model of the algorithm to recent studies of a large dataset of in-situ measurements. In particular, the questions of a parameterization of the lidar extinction-to-backscatter ratio and the choice of the mass-size relationship for ice crystals were addressed. The second part of my work consisted in adapting the Varcloud retrieval algorithm to airborne platforms. Airborne platforms are ideal to prepare and validate space missions, allowing for direct underpasses of spaceborne instruments. Moreover, German and French aircraft, respectively HALO and French Falcon 20 have very complementary payloads and are perfectly designed for the preparation, the calibration and the validation of EarthCare. Both aircraft board a high spectral resolution lidar (355 nm on the French Falcon and 532 nm on the HALO) and a Doppler radar at 36 GHz (HALO) and 95 GHz (Falcon). In fall 2016 a field campaign related to the NAWDEX project took place in Iceland, Keflavik with both aircraft involved. The measurements collected during this campaign provide an interesting dataset to characterize cloud microphysics and dynamics in the North Atlantic, which are of high interest regarding the Cloudsat-CALIPSO and EarthCARE missions. In addition, a series of common legs with the same cloud scene observed by both platforms were performed, providing data to study the influence of the instrumental configuration on the retrieved ice cloud properties.L'impact des nuages de glace sur le cycle de l'eau et le bilan radiatif est encore incertain en raison de la complexité des processus nuageux qui rend difficile l'acquisition d'observations adéquates sur les propriétés des nuages de glace et leur représentation dans les modèles de circulation générale. Les instruments de télédétection actifs et passifs, tels que les radiomètres, les radars et les lidars, sont couramment utilisés pour les étudier. La restitution des propriétés microphysiques des nuages (extinction, contenu en glace, rayon effectif, ...) peut être effectuée à partir d'un seul instrument ou de la combinaison de plusieurs instruments. L’intérêt de l’utilisation de synergies instrumentales pour restituer les propriétés nuageuses réside dans le fait que cela permet de réduire les incertitudes dues aux lacunes des différents instruments pris séparément. La constellation de satellites A-Train a considérablement amélioré notre connaissance des nuages. Depuis 2006, le lidar à rétrodiffusion visible CALIOP embarqué à bord du satellite CALIPSO et le radar nuage à 94GHz CPR embarqué à bord du satellite CloudSat ont permis l’acquisition de profils nuageux sur l’ensemble du globe et de nombreuses méthodes synergiques de restitution ont été adaptées à ces instruments. En 2021 sera lancé un nouveau satellite, EarthCARE, embarquant des instruments de télédétection de pointe, notamment ATLID, un lidar à haute résolution spectrale (HSRL) à 355 nm et un radar nuage Doppler à 94 GHz. La mission principale de ce satellite est de quantifier les interactions entre les nuages, les aérosols et le bilan radiatif de la Terre afin d'améliorer les prévisions météorologiques et des modèles climatiques. Grâce à son instrumentation avancée installée sur une plate-forme unique, cette nouvelle mission devrait fournir des observations sans précédent des nuages depuis l'espace. Cependant, pour ce faire, les algorithmes synergiques développés pour les mesures de l'A-Train doivent être adaptés à cette nouvelle configuration instrumentale. Au cours de ma thèse, je me suis concentrée sur l'algorithme Varcloud développé en 2007 par Delanoë et Hogan et basé sur une technique variationnelle. La première partie du travail a consisté à adapter certains paramètres du modèle microphysique de l’algorithme aux études récentes d’une large base de données in situ. En particulier, les questions de la paramétrisation du rapport lidar et du choix de la relation masse-diamètre pour les cristaux de glace ont été abordées. La deuxième partie de mon travail a consisté à adapter l'algorithme de restitution Varcloud aux plates-formes aéroportées. Les plates-formes aéroportées sont idéales pour préparer et valider les missions spatiales, permettant de réaliser des mesures sous-trace, colocalisées avec les instruments spatiaux. En particulier, le HALO allemand et le Falcon 20 français ont des charges utiles très complémentaires et sont parfaitement conçus pour la préparation et la validation de la mission EarthCare. Les deux avions embarquent notamment un lidar à haute résolution spectrale (355 nm sur le Falcon et 532 nm sur le HALO) et un radar Doppler à 36 GHz (HALO) et 95 GHz (Falcon). À l'automne 2016, une campagne aéroportée dans laquelle les deux avions étaient impliqués s'est déroulée en Islande, à Keflavik, dans le cadre du projet NAWDEX. Les mesures recueillies au cours de cette campagne fournissent un ensemble de données intéressant pour caractériser la microphysique et la dynamique des nuages dans l'Atlantique Nord, région qui présent un grand intérêt pour les missions Cloudsat-CALIPSO et EarthCARE. En outre, une série de vols communs avec observation de la même scène nuageuse par les deux plates-formes ont été réalisées, fournissant des données permettant d'étudier l'influence de la configuration instrumentale sur les propriétés des nuages de glace restituées

    Development and evaluation of multisensor methods for EarthCare mission based on A-Train and airborne measurements

    Get PDF
    The impact of ice clouds on the water cycle and radiative budget is still uncertain due to the complexity of cloud processes that makes it difficult to acquire adequate observations of ice cloud properties and parameterize them into General Circulation Models. Passive and active remote sensing instruments, radiometers, radars and lidars, are commonly used to study ice clouds. Inferring cloud microphysical properties (extinction, ice water content, effective radius, ...) can be done from one instrument only, or from the synergy of several. The interest of using instrumental synergies to retrieve cloud properties is that it can reduce the uncertainties due to the shortcomings of the different instruments taken separately. The A-Train constellation of satellites has considerably improved our knowledge of clouds. Since 2006, the 532nm backscattering lidar CALIOP on board the satellite CALIPSO and the 94GHz cloud radar CPR on board the satellite CloudSat have acquired cloud vertical profiles globally and many lidar-radar synergetic methods have been adapted to CloudSat and CALIPSO data. In 2021 will be launched a new satellite, EarthCARE, boarding state of the art remote sensing instrumentation, in particular ATLID, a High Spectral Resolution Lidar (HSRL) at 355nm and a Doppler cloud radar at 94 GHz. The main mission of this satellite is to quantify interactions between clouds, aerosols and the Earth's radiation budget in order to improve weather prediction and climate models. Thanks to its advanced instrumentation mounted on a single platform, this new mission is expected to provide unprecedented observations of clouds from space. However, to do so, the synergistic algorithms that were developed for A-Train measurements have to be adapted to this new instrumental configuration. During my PhD, I focused on the Varcloud algorithm that was developed in 2007 by Delanoë and Hogan, based on a variational technique. The first part of the work consisted in adapting some parameters of the microphysical model of the algorithm to recent studies of a large dataset of in-situ measurements. In particular, the questions of a parameterization of the lidar extinction-to-backscatter ratio and the choice of the mass-size relationship for ice crystals were addressed. The second part of my work consisted in adapting the Varcloud retrieval algorithm to airborne platforms. Airborne platforms are ideal to prepare and validate space missions, allowing for direct underpasses of spaceborne instruments. Moreover, German and French aircraft, respectively HALO and French Falcon 20 have very complementary payloads and are perfectly designed for the preparation, the calibration and the validation of EarthCare. Both aircraft board a high spectral resolution lidar (355 nm on the French Falcon and 532 nm on the HALO) and a Doppler radar at 36 GHz (HALO) and 95 GHz (Falcon). In fall 2016 a field campaign related to the NAWDEX project took place in Iceland, Keflavik with both aircraft involved. The measurements collected during this campaign provide an interesting dataset to characterize cloud microphysics and dynamics in the North Atlantic, which are of high interest regarding the Cloudsat-CALIPSO and EarthCARE missions. In addition, a series of common legs with the same cloud scene observed by both platforms were performed, providing data to study the influence of the instrumental configuration on the retrieved ice cloud properties

    Application of a synergistic framework to airborne radar-lidar measurements to retrieve ice cloud microphysics

    No full text
    International audienceIn this presentation, we demonstrate the application of a synergistic framework to airborne radar-lidar measurements to retrieve ice crystal size and concentration. In anticipation of the future EarthCARE mission, our focus is on the comparison of retrieved ice cloud microphysics from coordinated airborne and satellite measurements. On the basis of this study, the influence of sensor performance on retrieved ice cloud products is compared and discussed with respect to future spaceborne missions

    Remote Sensing of Ice Cloud Properties Using Combined Airborne Lidar-Radar Measurements

    No full text
    International audienceIce clouds play an essential role in the climate system since they have a large direct effect on the Earth’s radiation budget. Their reaction to changes in water vapor concentrations and their interaction with aerosols still constitutes one of the largest uncertainties in climate change predictions. These uncertainties arise from uncertainties associated with the optical and microphysical properties of ice clouds as well as from insufficient knowledge about their spatial and temporal distribution.Substantial improvement of our understanding of the interconnection of aerosols, clouds and radiation is expected from the combination of multiple instruments exploiting sensitivities at different wavelengths. To this end, the upcoming ESA/JAXA satellite mission EarthCARE will combine a new generation spaceborne lidar system, a cloud radar, and a multi-spectral imager on one single platform. In our work, we investigate the potential to combine lidar and radar measurements to retrieve ice cloud microphysics. For the first time, this study combines the high spectral resolution (HSRL) and differential absorption (DIAL) lidar system WALES and the 35 GHz cloud radar onboard the German High Altitude and LOng range research aircraft to retrieve ice cloud properties. During flight experiments over Europe and over the extra-tropical North-Atlantic, collocated measurements with the spaceborne CALIPSO/CALIOP lidar and CloudSat radar are used to investigate the influence of different wavelengths and spatial resolutions on retrieved ice cloud properties.In our presentation, we will give first results of the synergistic approach using the differential sensitivity of the WALES lidar and the cloud radar to retrieve ice particle size and their concentration. Here, the central focus will be on the coordinated airborne and satellite measurements and on the comparison of retrieved ice cloud microphysics in preparation for the EarthCARE mission

    Coordinated airborne and spaceborne lidar and radar measurements for synergistic analysis

    No full text
    International audienceDuring NAWDEX coordinated flights with the German research aircraft HALO and the French Falcon were performed; both equipped with similar payload at different wavelengths to study wavelengths effects on retrieved properties and synergistic analysis. Additionally A-Train underpasses with HALO were performed during NARVAL and NAWDEX. In our presentation we will give an overview of measurements and instrumentation and show first results of the airborne-airborne and airborne-spaceborne comparisons

    Aerosol - Cloud Target Classification in HALO Lidar/Radar Collocated Measurements

    No full text
    The 29th International Laser Radar Conference (ILRC 29)International audienceParticle attenuated backscatter and depolarization ratio at 532 nm from the WALES (Water Vapor Lidar Experiment in Space) instrument are used in combination with the radar reflectivity from the 35 GHz MIRA35 cloud radar in order to perform an aerosol-cloud target classification on the lidar/radar collocated observations carried out with the High Altitude and LOng-range research aircraft (HALO), in high temporal and spatial resolution.The methodology is applied to the measurements conducted during the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) in fall 2016. Here, we present one case study to show the feasibility and information context of the aerosol-cloud discrimination, which can serve as a good complement to the Cloud target categorization applied already in the measurements. Our results demonstrate that the developed mask is capable to identify complex stratifications with different aerosol and cloud types and even aerosol layers of low signal

    Aerosol - Cloud Target Classification in HALO Lidar/Radar Collocated Measurements

    Get PDF
    Particle attenuated backscatter and depolarization ratio at 532 nm from the WALES (Water Vapor Lidar Experiment in Space) instrument are used in combination with the radar reflectivity from the 35 GHz MIRA35 cloud radar in order to perform an aerosol-cloud target classification on the lidar/radar collocated observations carried out with the High Altitude and LOng-range research aircraft (HALO), in high temporal and spatial resolution. The methodology is applied to the measurements conducted during the North Atlantic Waveguide and Downstream Impact Experiment (NAWDEX) in fall 2016. Here, we present one case study to show the feasibility and information context of the aerosol-cloud discrimination, which can serve as a good complement to the Cloud target categorization applied already in the measurements. Our results demonstrate that the developed mask is capable to identify complex stratifications with different aerosol and cloud types and even aerosol layers of low signal

    Variability of low-level clouds over the southern oceans

    No full text
    International audienceClimate model simulations of cloud radiative properties over the Southern Ocean (SO) show thatclouds reflect too little solar radiation compared with observations. This results in large errors inthe modelled sea surface temperature, atmospheric circulation and climate sensitivity. Low-level(LL) mixed-phase clouds (MPCs) in the cold sectors of extratropical cyclones are identified as themain contributor to the SO radiation bias.In this study, LL clouds are investigated between 40°S and 82° S to provide a new insight into theirgeographical distribution, as well as their spatial and temporal variabilities. The methodologyrelies on DARDAR products which exploits the synergy of CALIPSO's lidar and CloudSat's radarspace-borne remote sensing observations. Based on DARDAR cloud-type products, a cloudclassification program was developed to establish cloud spatial and temporal distributions. Thisstudy concerns all types of cloud, including MPCs and supercooled-water containing clouds. Themean seasonal LL cloud cover for 2007-2010 over oceans (including sea-ice) varies from 64.4% inwinter to 68.4% in fall. Larger cloud covers are observed between 50°S and 65°S where clouds arepresent more than 80% of the time. Dividing the studied area into smaller regions allowed toextract homogeneous sectors in term of cloud coverage. This analysis draw attention on someregions, such as the Tasman Sea sector that undergoes the highest seasonal variations for MPCand USLC occurrence, and the Argentinian coasts that presents important differences with otherregions at the same latitudes. Over the Southern Ocean, the Weddell Sea sector stands out with arelatively low LL cloud occurrence.Statistical analyses were carried out to determine the influence of the meteorological andbiological conditions on cloud occurrence. Even though air temperature drives all cloud-typeoccurrences, it was found that the lower-tropospheric stability (LTS) is a good predictor of ice-cloud occurrence between 40°S and 50°S, particularly. With biological activity, first results indicatestrong correlations with cloud occurrence, where chlorophyll-a, nanophytoplankton andparticulate organic carbon concentrations are investigated between 40°S and 60°S

    Preparation of the ADM-Aeolus mission using 355nm high spectral resolution Doppler LIDAR and a Doppler cloud radar

    No full text
    International audienceWe will present airborne wind profile measurements performed during the NAWDEX-EPATAN campaign held in Iceland on September 21 to October 18, 2016. The airborne high spectral resolution LNG LIDAR was taking measurements onboard the French SAFIRE falcon 20 (F20) along with the cloud Doppler radar RASTA. LNG line-of-sight can be oriented nadir/zenith and side looking with an angle of 37 degrees off vertical on request. Wind profile retrievals are possible thanks to backscattering signals incoming from thin ice clouds and aerosols. This 37° pointing configuration allows similar measurements to ALADIN onboard the ADM-Aeolus satellite to be launched end 2018. In addition to the LIDAR and radar wind measurements, in situ wind measurements were also obtained from dropsondes launched from the F20. We will give an overview of the instruments onboard the French falcon. Then we will present the principle of estimations of the horizontal wind components with the HSR LNG LIDAR operating in the ADM ALADIN mode (37°). The LIDAR measurements obtained during several flights of the NAWDEX-EPATAN campaign will be compared against measurements given by dropsondes and the combination of the three antennas of Doppler cloud radar
    corecore